การอบรมหลักสูตร
สำหรับผู้ใช้งานระบบโครงข่ายไร้สาย (สพป. และ สพม.)

ระบบงานโครงข่ายไร้สาย
ในโรงเรียน
ระบบงานโครงข่ายไร้สาย
ในโรงเรียน
สารบัญ

หมวดที่ ๑ บทนำ... ๔
 บทนำ (OVERVIEW).. ๔

หมวดที่ ๒ SYSTEM OVERVIEW.. ๖
 ๒.๑ OVERVIEW .. ๖
 ๒.๒ ARCHITECTURE .. ๖

หมวดที่ ๓ DESIGN ... ๘
 ๓.๑ OVERVIEW .. ๘
 ๓.๒ DESIGN .. ๘
 ๓.๓ OTPC WI-FI NETWORK DIAGRAM ... ๘
 ๓ การทำงานระบบ ๔ AUTHENTICATION SOLUTION และ LOG SYSTEM .. ๑๐
 ๓ การตรวจสอบสิทธิ์ ๕ (AUTHENTICATION) .. ๑๑
 ๓.๔ หลักการทำงานแบบระบบโครงข่ายไร้สายภายในโรงเรียน ... ๑๒
 ๓.๕ รูปแบบการเชื่อมต่อระบบโครงข่ายไร้สายของโรงเรียน .. ๑๔
 ๓.๖ การใช้งานระบบโครงข่ายไร้สายของโรงเรียน .. ๑๔
 ๓.๗ การใช้งานอุปกรณ์กระจายสัญญาณไร้สาย .. ๒๐
 ๓.๘ การลงทะเบียนเพื่อใช้งาน (SELF-REGISTER) .. ๒๒

หมวดที่ ๔ การใช้งาน ZYXEL SMART GATEWAY .. ๒๔
 ๔.๑ การติดตั้งอุปกรณ์ .. ๒๔
 ๔.๒ การติดตั้งอุปกรณ์และการเชื่อมต่อพร้อมสัญญาณไฟ .. ๒๔

หมวดที่ ๕ การใช้งาน ZYXEL WIRELESS ACCESS POINT .. ๓๐
 การติดตั้งอุปกรณ์และการเชื่อมต่อพร้อมสัญญาณไฟ ... ๓๐

หมวดที่ ๖ แผนผังการทำงานและการแก้ปัญหาของการเชื่อมต่อบรรยายโครงข่ายไร้สาย ๓๕
 ๖.๑ โรงเรียนที่ใช้สัญญาณดาวเทียม IP STAR ... ๓๕
 ๖.๒ โรงเรียนที่ใช้สัญญาณดาวเทียม OBECS.NET ... ๓๗
 ๖.๓ โรงเรียนที่ใช้สัญญาณดาวเทียม OBECS.NET (มี ROUTER CISCO 892) ๓๙
 ๖.๔ โรงเรียนที่ใช้สัญญาณดาวเทียม OBECS.NET (ไม่มี ROUTER CISCO 892) ๔๑

ภาคผนวก.. ๔๓
 ตัวอักษรที่ควรทราบ ... ๔๓
 อุปกรณ์ที่ควรทราบ ... ๔๔
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
ระบบงานโครงข่ายไร้สายในโรงเรียน
เอกสารการออกแบบและพัฒนาระบบโครงข่ายไร้สาย (Wi-Fi Network) สำหรับโครงการจัดการเรียนการสอนด้วยเครื่องคอมพิวเตอร์ทุกพื้นที่ (แท็บเล็ต) จัดทำขึ้นเพื่อเสนอรายละเอียดการออกแบบระบบโครงข่ายไร้สาย (Wi-Fi Network) ซึ่งมีแนวทางการออกแบบดังนี้

ในปี พ.ศ. ๒๕๔๖ กระทรวงศึกษาธิการ ได้มอบหมายให้ บมจ.ทีโอที และ บมจ.กสท โทรคมนาคม ดำเนินการให้บริการระบบอินเทอร์เน็ต ซึ่งเป็นการผสมผสานสื่ออินเทอร์เน็ตแบบทางสายและไร้สาย ให้แก่โรงเรียน สถานศึกษาและหน่วยงานในสังกัด กระทรวงศึกษาธิการ ทั่วประเทศ ทั้งนี้ ได้มีการปรับปรุงและพัฒนาเทคโนโลยีในการให้บริการระบบอินเทอร์เน็ต ตลอดจนถึงปัจจุบันได้ให้บริการระบบอินเทอร์เน็ตด้วยโครงข่าย IP-VPN (MPLS) และ IPStar

ระบบโครงข่ายไร้สายของโครงการ OBEC Data Center 2 เป็นการพัฒนาและปรับปรุงคุณภาพจากโครงสร้างของระบบแบบเดิมที่มีการใช้งานโครงข่ายภายใน (Intranet) และภายนอก (Internet) ผ่านเทคโนโลยี MPLS/VPN (Multi-Protocol Label Switching / Virtual Private Network) ในการเข้าถึงข้อมูลข่าวสาร ซึ่งในแต่ละปีมีการใช้งานแบบคาวิ (Bandwidth) ของนักเรียน ครู ตามโรงเรียนต่างๆ ที่อยู่ภายในโครงการมีความต้องการเพิ่มขึ้นอย่างต่อเนื่องทุกปี เนื่องจากการค้นคว้าหาความรู้ของนักเรียน ครู และบุคลากรไม่ได้จำกัดเพียงแค่ข้อมูลในห้องเรียนหรือห้องสมุดเท่านั้น แต่สามารถค้นคว้าหาความรู้ได้จากสื่อต่างๆ ที่อยู่ในโครงข่ายภายนอก (Internet) เนื่องจากความก้าวหน้าทางเทคโนโลยี (Technological Progress) ในยุคปัจจุบัน นักเรียน ครู และประชาชนทั่วไปสามารถเข้าถึงข้อมูลข่าวสารได้ตามความต้องการทางระบบโครงข่าย มีความพร้อมให้บริการ มีประสิทธิภาพ มีเสถียรภาพ มั่นคงและปลอดภัย ด้วย
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
หมวดที่ ๒ SYSTEM OVERVIEW

๒.๑ Overview

โครงการ One tablet per child เป็นโครงการที่จะช่วยส่งเสริมคุณภาพทางการศึกษาและเพิ่มขีดความสามารถในการแข่งขันของเด็กไทยในประเทศ โดยประกาศจากข้อกำหนดการเข้าถึงข้อมูลข่าวสาร ทำให้เด็กไทยที่อยู่ไกลสามารถก้าวหน้าการเปลี่ยนแปลงของโลกได้ทันที

ระบบโครงข่าย OBEC Data Center 2 เป็นระบบที่ปลูกออกแบบไว้ในลักษณะการออกแบบข้อมูลโครงข่ายภายใน (Intranet) และการออกแบบระบบเป็นแบบทางสายเป็นหลักโดยมีระบบบริหารจัดการจากศูนย์ (Centralized Management) นักเรียน ครู และบุคลากรที่อยู่ในโครงการ ถ้าต้องการเข้าถึงข้อมูลข่าวสารภายนอกโครงข่าย (Internet) ต้องทำการรับ-ส่ง ข้อมูลมาที่ศูนย์กลางทำให้เกิดการคับคั่งของข้อมูลที่ศูนย์กลางอย่างไรก็ตาม การออกแบบโครงสร้างของโครงข่ายเพื่อให้สามารถรองรับการใช้งานคอมพิวเตอร์แบบไร้สาย จำนวนกว่า ๘๐๐,๐๐๐ เครื่อง และยังสามารถเข้าถึงข้อมูลข่าวสารได้อย่างรวดเร็ว มีประสิทธิภาพ นับแค่และปลอดภัย ต้องสามารถตรวจสอบข้อมูลผู้ใช้งาน (Authentication) ต้องมีการเก็บบันทึกข้อมูลการจราจรความปลอดภัยโครงข่ายอินเทอร์เน็ต (Log System) รวมถึงระบบการพัฒนาสื่อการเรียนการสอนในรูปแบบ Digital file, Video on demand, Video streaming และ Cloud application

๒.๒ Architecture

ระบบโครงข่าย OBEC Data Center 2 New Generation Wireless Network ถูกออกแบบให้เป็นแบบผสม (Hybrid Architecture) ที่ยังคงรูปแบบการบริหารจัดการจากศูนย์กลาง (Centralized Management) ที่จ่ายต่อการควบคุมการส่งรับข้อมูล การตรวจสอบdden (Monitoring) การแก้ไขปัญหาต่างๆ (Troubleshooting) แต่สามารถลดปัญหาการคับคั่งของข้อมูลที่ศูนย์กลาง เพราะมีอุปกรณ์ในการบริหารจัดการ (Traffic Management) ที่ติดตั้งอยู่โครงข่าย OBEC Data Center 2ตามภูมิภาคต่างๆ ของประเทศ ผู้ใช้งานที่เป็นนักเรียน ครู บุคลากร ตามโรงเรียนต่างๆ รวมทั้งประชาชนทั่วไป ที่เข้าใช้งานผ่านโครงข่ายแบบสายและไร้สาย จะถูกกำหนดสิทธิการเข้าใช้งาน (Authentication) พร้อมระบบการจัดเก็บข้อมูลการจราจรทางอิเล็กทรอนิกส์ ให้เป็นไปตามพระราชบัญญัติว่าด้วยการกระทำความผิดทางคอมพิวเตอร์ พ.ศ. ๒๕๕๐ (Log System) และระบบการบริหารจัดการข้อมูลที่แตกต่างกัน (Traffic Management) เชน การจำแนกเส้นทางของข้อมูลในโครงข่ายภายใน (Intranet) และภายนอก (Internet) รวมถึงการมีอุปกรณ์ป้องกันการโจมตีเครือข่าย (Firewall) จากผู้ไม่หวังดี (Hacker) เข้าไปยัง
อุปกรณ์โครงข่ายภายในโรงเรียนต่างๆ ที่อยู่ภายในโครงการ OBEC Data Center 2ได้ ดังกรอบแนวคิดตามรูป

รูปแสดงแนวความคิดของการพัฒนาระบบโครงข่ายเพื่อรองรับการใช้งานทางสายและไร้สาย
หมวดที่ ๓ DESIGN

๓.๑ Overview

ในหมวดนี้จะกล่าวถึงรายละเอียดการออกแบบของ OTPC Wi-Fi ได้แก่

๓.๑.๑ Registration Service
๓.๑.๒ Authentication and Authorization Service
๓.๑.๓ Log System

โดยแต่ละบริการจะได้รับการออกแบบให้ทําหน้าที่ตามขอบเขตที่กําหนดไว้ในส่วนของ Functional Scope

๓.๒ Design

การออกแบบระบบ OTPC Wi-Fi

ระบบ OTPC Wi-Fi จะประกอบด้วยการทํางาน 2 อุปกรณ์ ดังนี้

๓.๒.๑ อุปกรณ์ป้องกันการโจมตีโครงข่ายระบบโครงข่ายไร้สาย (Firewall)
๓.๒.๒ อุปกรณ์กระจายสัญญาณไร้สาย

๓.๓ OTPC Wi-Fi Network Diagram

ระบบดังกล่าวจะถูกจัดวางเป็นศูนย์กลาง และ การบริหารจัดการระบบจะรวมกับระบบบริหารจัดการระบบสี่แยก (Centralized Management) ระบบบริหารจัดการและอุปกรณ์ควบคุมระบบตรวจสอบสิทธิ์ (Authentication) และระบบเก็บข้อมูลจราจรอิเล็กทรอนิกส์ (Log) ในโครงการพัฒนาระบบโครงข่ายไร้สาย (OTPC Wi-Fi Data Center) ประกอบด้วย

๓.๓.๑ Wireless Controller
๓.๓.๒ Portal WEB Server
๓.๓.๓ Network Management Server
๓.๓.๔ RADIUS Server
๓.๓.๕ LOG Server
๓.๓.๖ Disk Storage
ระบบโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย (OTPC Wi-Fi Network)

รูปแสดงถึงระบบบริหารจัดการและอุปกรณ์ควบคุมระบบตรวจสอบสิทธิ์ (Authentication) และระบบเก็บข้อมูลจากระยละเอียดพร้อม (Log) ในโครงการพัฒนาระบบโครงข่ายไร้สาย (OTPC Wi-Fi Data Center)
ระบบโครงข่ายไร้สายในโรงเรียน

3.4 การทำงานระบบ Authentication Solution และ Log System

3.4.1 หลักการทำงานของระบบตรวจสอบตัวตนและสิทธิ์ของผู้ใช้งานโครงข่ายไร้สายภายในโรงเรียน

ระบบการทำงานของโครงข่ายไร้สายภายในโรงเรียน ดังรูปภาพที่ 8 สามารถอธิบายการทำงานได้ตามขั้นตอนดังนี้

3.4.1.1 เมื่ออุปกรณ์คอมพิวเตอร์แบบไร้สายทำการค้นหาการเชื่อมต่ออุปกรณ์กระจายสัญญาณแบบไร้สาย (Wireless Access Point) ตามชื่อของสัญญาณ (SSID) และเมื่อทำการเชื่อมต่อระบบตรวจสอบสิทธิ์จะแสดงขึ้นที่อุปกรณ์คอมพิวเตอร์แบบไร้สายทันที

3.4.1.2 เมื่อระบบตรวจสอบสิทธิ์แสดงสถานะขึ้น จะทำการตรวจสอบสิทธิ์การเข้าใช้งานรวมกับอุปกรณ์ Radius Server ที่ติดตั้งอยู่ศูนย์กลางโครงข่าย OBEC Data Center 2 ของ สพฐ. และอุปกรณ์คอมพิวเตอร์แบบไร้สายที่มีรหัสผ่าน (Password) ในการยืนยันการเข้าใช้งาน หรืออุปกรณ์เครื่องอื่นๆ ถูกผู้ดูแลระบบอนุญาตให้เข้าใช้งานผ่านระบบตรวจสอบสิทธิ์แบบเครื่องที่มีทั้งหมดหมายเลขประจุเครื่อง (Mac-address) อุปกรณ์คอมพิวเตอร์แบบไร้สายเครื่องนั้นจะสามารถเข้าถึงโครงข่ายภายใน (Intranet) และโครงข่ายภายนอก (Internet) ได้ตามความต้องการของผู้ใช้งาน

3.4.1.3 อุปกรณ์ป้องกันการโจมตีโครงข่ายจะทำการจัดเก็บข้อมูลการใช้งานของอุปกรณ์คอมพิวเตอร์แบบไร้สายตามเงื่อนไขของพระราชบัญญัติว่าด้วยการกระทำความผิดทางคอมพิวเตอร์ พ.ศ. 2550 และส่งข้อมูลการใช้งานไปเก็บบันทึกไว้ที่ อุปกรณ์ Log server ที่ศูนย์กลางโครงข่าย OBEC Data Center 2 ของ สพฐ. ดังรูป
ระบบโครงข่ายไร้สายในโรงเรียน

รูปแสดง การทำงานของระบบตรวจสอบตัวตนและสิทธิ์ของการใช้งานของระบบโครงข่ายไร้สายภายในโรงเรียน

3.5 การตรวจสอบสิทธิ์ (Authentication)

3.5.1 การตรวจสอบสิทธิ์ (Authentication) ที่ได้ 2 แบบ

- 3.5.1.1 MAC Address ของ Tablet PC สำหรับกรณีที่มีการลงทะเบียนอุปกรณ์ไว้
- 3.5.1.2 User Authentication กรณีที่ไม่มีการลงทะเบียน MAC Address ของ Tablet PC จะทำการตรวจสอบสิทธิ์ผ่าน Page User Login

3.5.2 วิธีการตรวจสอบสิทธิ์ (Authentication Solution)

มี 2 รูปแบบ ดังนี้

- 3.5.2.1 Authentication Solution with New Access point (ZyXELรุ่น NWA5160N)

กรณีที่เป็นอุปกรณ์กระจายสัญญาณแบบไร้สาย (Access Point) รุ่นใหม่ ยี่ห้อ ZyXEL รุ่น NWA5160N หลักการ Authentication เมื่อมีผู้ใช้งานเชื่อมต่ออุปกรณ์แบบมีสาย (LAN) หรือไร้สาย (Wireless) ผ่าน Access Point ระบบตรวจสอบสิทธิ์โดยอุปกรณ์ป้องกันการโจมตีโครงข่ายระบบโครงข่ายไร้สาย (Firewall) ที่ติดตั้งอยู่ตามโรงเรียนจะทำการตรวจสอบสิทธิ์ผู้ใช้งานร่วมกับ Radius Server ที่ Data Center โดยตรวจสอบ Mac Address ถ้าอุปกรณ์ไม่ได้ลงทะเบียนไว้ระบบจะทำการตรวจสอบตัวตนแบบ User Authentication โดยขึ้น Page
User Login เพื่อให้ผู้ใช้งาน Login กรณีที่มีการลงทะเบียน Mac Address ของอุปกรณ์นั้นๆไว้แล้ว User จะสามารถใช้งานได้ทันที

3.5.2.1 Authentication Solution with Other Access point (HP 410)

กรณีที่เป็นอุปกรณ์กระจายสัญญาณแบบไร้สาย (Access Point) รุ่นเดิม ยี่ห้อ HP รุ่น HP 410 หลักการ Authentication เมื่อมีผู้ใช้งานเชื่อมต่ออุปกรณ์แบบมีสาย (LAN) หรือไร้สาย (Wireless) ผ่าน Access Point ระบบตรวจสอบสิทธิ์จะผ่านอุปกรณ์ป้องกันการโจมตีโครงข่ายระบบโครงข่ายไวไฟ (Firewall) ที่ติดตั้งอยู่ตามโรงเรียนโดยไม่มีการตรวจสอบสิทธิ์ผู้ใช้งานแต่ระบบจะไปตรวจสอบสิทธิ์การใช้งานที่ OBEC Radius Server แทน โดยการตรวจสอบจะทำการตรวจสอบ Mac Address อุปกรณ์ที่มีการลงทะเบียนไว้จะสามารถใช้งานได้ทันทีหากไม่มีการลงทะเบียนไว้จะขึ้น Page User Login เพื่อให้ผู้ใช้งาน Login

3.6 หลักการออกแบบระบบโครงข่ายไร้สายภายในโรงเรียน

หลักการออกแบบระบบโครงข่ายไร้สายภายในแต่ละโรงเรียนสามารถอธิบายการเชื่อมต่อตามรูปภาพที่ 9 โดยลักษณะการเชื่อมต่อจะเป็นการนำระบบโครงข่ายไร้สายที่สร้างขึ้นมาใหม่มาเชื่อมต่อกับระบบโครงข่ายภายในโรงเรียน แต่มีการปรับปรุงคุณภาพของสื่อสัญญาณ การเพิ่มขนาดของแบนด์วิธ (Bandwidth) ในแต่ละโรงเรียนเพื่อรองรับจำนวนอุปกรณ์คอมพิวเตอร์แบบไร้สายรวมถึงอุปกรณ์ Tablet ของนักเรียน ตามนโยบายรัฐบาลด้วย
ระบบโครงข่ายไร้สายในโรงเรียน

รูปภาพแสดง การเชื่อมต่อของระบบโครงข่ายไร้สายภายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
3.7 รูปแบบการเชื่อมต่อระบบโครงข่ายไร้สายของโรงเรียน

รูปแบบการเชื่อมต่อระบบโครงข่ายไร้สายของโรงเรียน มี ๔ รูปแบบดังนี้

๑. รูปแบบโรงเรียนที่อยู่ในโครงข่าย OBEC-Net (มี Router Cisco 892)

<table>
<thead>
<tr>
<th>ลำดับการเชื่อมต่อของระบบ</th>
<th>การเชื่อมต่ออุปกรณ์ Router Cisco 892</th>
</tr>
</thead>
<tbody>
<tr>
<td>๑. การเชื่อมต่ออุปกรณ์ Firewall</td>
<td>Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับ Port 6 ของ Router Cisco 892 โดยใช้ IP 10.x.x.x/27 ในกรณีที่โรงเรียนได้รับจัดสรรอุปกรณ์กระจายสัญญาณไร้สายเพิ่ม</td>
</tr>
<tr>
<td></td>
<td>Port 3-4 ของอุปกรณ์ Firewall จะไม่มีการเชื่อมต่ออุปกรณ์ ในการที่โรงเรียนได้รับจัดสรรอุปกรณ์กระจายสัญญาณไร้สายเพิ่ม</td>
</tr>
<tr>
<td></td>
<td>Port 3-4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N โดยใช้ IP 172.16.1.x/24 เพื่อใช้กับอุปกรณ์ไร้สาย</td>
</tr>
<tr>
<td></td>
<td>Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network เดิมของโรงเรียนโดยใช้ IP 192.168.10.x/23</td>
</tr>
</tbody>
</table>

การทำงานของเครือข่าย

เครือข่าย Network ภายใน IP 172.16.1.x/24 และ 192.168.10.x/23 เมื่อออกไป Network ภายนอกอุปกรณ์ Firewall จะทำงาน NAT แบบ overload ไปที่ IP 10.x.x.x/27
รูปภาพแสดง การทำงานของระบบรูปแบบโรงเรียนที่อยู่ในโครงข่าย OBEC-Net (มี Router Cisco 892)

๒. รูปแบบโรงเรียนที่อยู่ในโครงข่าย OBEC-Net (ไม่มี Router Cisco 892)

ลักษณะเชื่อมต่อของระบบ
Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับอุปกรณ์ CPE โดยใช้ IP 172.x.x.x/31
Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N โดยใช้ IP 172.16.1.x/24 เพื่อใช้กับอุปกรณ์ไร้สาย
Port P5 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point HP410 โดยใช้ IP 172.16.8.x/23
Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network ของโรงเรียนโดยใช้ IP 192.168.10.x/23

การทำงานของเครือข่าย
เครือข่าย Network ภายใน IP 172.16.1.x/24, IP 172.16.8.x/23 และ 192.168.10.x/23 เมื่อออกไป Network ภายนอก ลูกข่าย Firewall จะทำการ NAT แบบ Polling โดยใช้ IP 10.x.x.x/27 ในการทำ Polling จากส่วนกลาง
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
3. รูปแบบโรงเรียนนอกโครงข่าย OBEC-Net

ลักษณะการเชื่อมต่อ
- Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับอุปกรณ์ CPE โดยใช้ IP 172.x.x.x/31
- Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N โดยใช้ IP 172.16.1.x/24 เพื่อให้กับอุปกรณ์ไวรัส
- Port P5 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point HP410 โดยใช้ IP 172.16.8.x/23
- Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network ของโรงเรียนโดยใช้ IP 192.168.10.x/23

การทำงานของเครือข่าย
เครือข่าย Network ภายในใน IP 172.16.1.x/24, IP 172.16.8.x/23 และ 192.168.10.x/23 เมื่อออกไป Network ภายนอก อุปกรณ์ Firewall จะทำการ NAT แบบ Polling โดยใช้ IP 10.x.x.x/27 ในการทำ Polling จากส่วนกลาง
ระบบโครงข่ายไร้สายในโรงเรียน

4. รูปแบบโรงเรียนที่ใช้สัญญาณดาวเทียม IP Star

ลักษณะการเชื่อมต่อ
- Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับอุปกรณ์ UT ของ IP Star โดยใช้ IP 192.168.5.100/24 และ IP Alias 10.x.x.x/30
- Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N โดยใช้ IP 172.16.1.x/24 เพื่อใช้กับอุปกรณ์สีแดง
- Port P5 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point HP410 โดยใช้ IP 172.16.8.x/23
- Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network ของโรงเรียนโดยจะ By Pass Port P6 ของอุปกรณ์ Firewall ไปที่อุปกรณ์ UT โดยจะรับ IP จาก UT IP 192.168.5.X/24

การทำงานของเครือข่าย
เครือข่าย Network ภายใน IP 172.16.1.x/24 และ IP 172.16.8.x/23 เมื่อออกไป Network ภายนอก อุปกรณ์ Firewall จะทำการ NAT แบบ Polling โดยใช้ IP 192.168.x.x/30 ในการทำ Polling จากส่วนกลาง ส่วน IP Alias 10.x.x.x/30 ใช้สำหรับติดต่อกับ OTPC Server ที่ OBEC Data Center 2 ส่วน IP 192.168.5.X/24 ที่ By Pass Port P6 ของอุปกรณ์ Firewall จะทำ NAT แบบ Polling ผ่านอุปกรณ์ UT

รูปแสดง การทำงานของระบบรูปแบบโรงเรียนที่ใช้สัญญาณดาวเทียม IP Star
การใช้งานระบบโครงข่ายไร้สายของโรงเรียน

การเชื่อมต่อระบบโครงข่ายไร้สายของโรงเรียนประกอบด้วย 2 อุปกรณ์ดังนี้

3.8.1 อุปกรณ์ป้องกันการโจมตีโครงข่ายระบบโครงข่ายไร้สาย (Firewall)

3.8.2 อุปกรณ์กระจายสัญญาณไร้สาย (Access Point)

3.8.2.1 ลักษณะการเชื่อมต่อของระบบ

Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับโครงข่ายผู้ให้บริการ

Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N โดยใช้ IP ดังนี้
- 172.16.2.x/23 สำหรับ SSID: Student Tablet
- 172.16.4.x/23 สำหรับ SSID: ICT Free WiFi
- 172.16.6.x/23 สำหรับ SSID: Guest
- 172.16.14.x/23 สำหรับ SSID: Student WiFi

เพื่อให้กับอุปกรณ์ไร้สาย

Port P5 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ของโรงเรียน โดยใช้ IP 172.16.8.x/23

Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network ของโรงเรียนโดยใช้ IP 192.168.10.x/23
ระบบโครงข่ายไร้สายในโรงเรียน

รูปแสดงการเชื่อมต่อของระบบโครงข่ายไร้สายของโรงเรียน OTPC WIFI

3.3 การใช้งานอุปกรณ์กระจายสัญญาณไร้สาย

อุปกรณ์กระจายสัญญาณไร้สาย Access Point จะมีกำหนดค่าดังนี้

- Bandwidth: 2.4 GHz
- Mode: B/G/N
- Channel: 1
- SSID: มี SSID โดยจำแนกตามผู้ใช้งาน ดังนี้
 - SSID1: Guest สำหรับบุคคลทั่วไปที่มาติดต่อราชการ Security password คือ obec_wifi
 - SSID2: Student_WiFi สำหรับใช้ MAC - Authentication นักเรียนชั้นประถมศึกษาปีที่ 1
 - SSID3: OBEC สำหรับเจ้าหน้าที่ ครู บุคลากรทางการศึกษาใช้ 802.1X User Authentication
 - SSID4: MICT_free_wifi สำหรับบุคคลทั่วไป ผู้ใช้งานต้องลงทะเบียนก่อนเข้าใช้งาน
ระบบงานโครงข่ายไร้สายในโรงเรียน

รูปแสดงการจับสัญญาณจากอุปกรณ์กระจายสัญญาณไร้สาย

รูปแสดง SSID ของอุปกรณ์กระจายสัญญาณไร้สาย From อุปกรณ์ไร้สาย Notebook
3.10 การลงทะเบียนเพื่อใช้งาน (Self-Register)

ผู้ใช้งานสามารถลงทะเบียนสมัครสมาชิกได้โดยตนเองโดยเลือกที่ข้อความ “สมัครสมาชิก”

จากนั้นให้คลิก “ยืนยันข้อมูลและยืนยันการลงทะเบียน”
กรอกข้อมูลลงทะเบียนแล้วคลิกปุ่มลงทะเบียน

ตรวจสอบข้อมูลการลงทะเบียนแล้วคลิกปุ่มยืนยัน
หลังจากยืนยันการลงทะเบียนผู้ใช้งานจะได้ User และ Password จากระบบ ผู้ใช้สามารถเปลี่ยนรหัสผ่านได้โดยคลิกที่ปุ่มเปลี่ยนรหัสผ่าน

การเปลี่ยนรหัสผ่านให้กรองรายละเอียดดังนี้
- ชื่อผู้ใช้งาน(ชื่อที่ใช้ในการ Login ที่ได้จากการลงทะเบียน)
- รหัสผ่านปัจจุบัน(รหัสผ่านที่ได้จากการลงทะเบียนหรือรหัสที่เปลี่ยนล่าสุด)
- รหัสผ่านใหม่(ใส่รหัสผ่านใหม่ที่ท่านต้องการ มากกว่าหรือเท่ากับ 5 ตัวอักษร)
- ยืนยันรหัสผ่านใหม่(ใส่รหัสผ่านให้ตรงกับรหัสผ่านใหม่)

จากนั้นให้คลิกที่ปุ่มเปลี่ยน
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
ระบบงานโครงข่ายไวไฟในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไวไฟ ยูเอส อิปซี (Wi-Fi Network)
หมวดที่ ๔ การใช้งาน ZYXEL SMART GATEWAY

๔.๑ การติดตั้งอุปกรณ์

ขั้นตอนที่ ๑ เชื่อมต่ออุปกรณ์ Wireless Access Point
ขั้นตอนที่ ๒ เชื่อมต่อ Media Modem/Router ISP
ขั้นตอนที่ ๓ เชื่อมต่อ Power Adapter เพื่อจ่ายไฟให้กับอุปกรณ์
ขั้นตอนที่ ๔ รอสังเกตสัญญาณไฟสถานะอุปกรณ์
ไฟแสดงการทำงานของอุปกรณ์

<table>
<thead>
<tr>
<th>ดวงไฟ</th>
<th>สี</th>
<th>สถานะ</th>
<th>ความหมาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR</td>
<td></td>
<td>ไม่ติด</td>
<td>อุปกรณ์ปิดอยู่ ยังไม่ทำงาน</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ติด</td>
<td>อุปกรณ์เปิดอยู่ กำลังทำงานปกติ</td>
</tr>
</tbody>
</table>
| | เขียว | ติด | อุปกรณ์กำลังมีการปรับปรุงระบบ หรือเริ่มระบบใหม่ ยังไม่พร้อมใช้งาน หรือ อาจจะมีไฟเสียไม่พอ หรืออุปกรณ์เข้าสู่รูปแบบปัญหาไม่สามารถใช้งานได้ ให้ทำการปิดและเปิดอุปกรณ์ใหม่ทิ้งครั้ง และรอจนกว่าอุปกรณ์จะบูตเสร็จประมาณ 5~10 นาที(หากยังเป็นสีแดง ให้ทำการตรวจสอบอาการ)
| | สีแดง | ติด | อุปกรณ์กำลังมีการปรับปรุงระบบ หรือเริ่มระบบใหม่ ยังไม่พร้อมใช้งาน และรอจนกว่าอุปกรณ์จะบูตเสร็จ ประมาณ 5~10 นาที |
| SYS | เขียว | ไม่ติด | อุปกรณ์ปิดอยู่ ยังไม่ทำงาน หรือไม่สามารถใช้งานได้ |
| | | ติด | อุปกรณ์เปิดอยู่ กำลังทำงานปกติ |
| | เขียว | กระพริบ | อุปกรณ์กำลังมีการปรับปรุงระบบ หรือเริ่มระบบใหม่ ยังไม่พร้อมใช้งาน และรอจนกว่าอุปกรณ์จะบูตเสร็จ ประมาณ 5~10 นาที |
| AUX | เขียว | ไม่ติด | ไม่มีการเชื่อมต่อ AUX |
| | | กระพริบ | มีการเชื่อมต่อ AUX พร้อมมีการรับส่งข้อมูล |
| | | ติด | มีการเชื่อมต่อ AUX |
| Ethernet Link | เขียว | ไม่ติด | ไม่มีการส่งผ่านข้อมูล |
| | | กระพริบ | มีการรับ-ส่ง ข้อมูลผ่าน Ethernet Port ในขณะนั้น |
| | | ติด | มีการเชื่อมต่อ Ethernet Port พร้อมใช้งาน |
| USB | เขียว | ไม่ติด | ไม่มีอุปกรณ์เชื่อมต่อ USB Port |
| | | ติด | มีอุปกรณ์เชื่อมต่อ USB Port เรียบร้อย |
| | | กระพริบ | รับส่งข้อมูลด้วยอุปกรณ์ USB ผ่านระบบ 3G |
| Card | เขียว | ไม่ติด | ไม่มีการดังใน slot (อุปกรณ์ต่อพ่วง เข้า 3G card) |
หมวดที่ 5 การใช้งาน ZYXEL WIRELESS ACCESS POINT

การติดตั้งอุปกรณ์และการเชื่อมต่อพร้อมสัญญาณไฟ

ขั้นตอนการติดตั้งอุปกรณ์
1. ติดตั้งอุปกรณ์ Power Over Ethernet (PoE) เข้ากับระบบ เพื่อเชื่อมต่อ Data Link และจำยกระแสไฟฟ้าให้กับอุปกรณ์ ในโครงการนี้จะใช้ PoE รุ่น ZyXEL PoE12-HP.
 - โดยลักษณะอุปกรณ์ ดังนี้
 - สถานะไฟ การทำงาน ดังนี้
ระบบโครงข่ายไร้สายในโรงเรียน

<table>
<thead>
<tr>
<th>คอลัมน์</th>
<th>สี</th>
<th>สถานะ</th>
<th>ความหมาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoE</td>
<td>ไม่ติด</td>
<td>อุปกรณ์เปิดอยู่ ยังไม่ทำงาน</td>
<td></td>
</tr>
<tr>
<td>เช้า</td>
<td>ติด</td>
<td>อุปกรณ์เปิดอยู่ กำลังทำงานปกติ และจ่ายไปให้กับ Device</td>
<td></td>
</tr>
<tr>
<td>กระพริบ</td>
<td>อุปกรณ์กำลังมีตรวจสอบ Device หรืออุปกรณ์มีปัญหาไม่สามารถใช้งานได้ ให้ทำการปิดและเปิดอุปกรณ์ใหม่ก่อนครั้ง หากอาการนี้ยังมีให้ทำการส่งตรวจสอบอาการ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWR</td>
<td>เช้า</td>
<td>อุปกรณ์เปิดอยู่ ยังไม่ทำงาน หรือไม่สามารถใช้งานได้</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ติด</td>
<td>อุปกรณ์เปิดอยู่ กำลังทำงานปกติ</td>
<td></td>
</tr>
</tbody>
</table>

2. โดยสังเกตได้จากไฟสถานะ PWR/SYS จะติดค้าง ไฟ ETHN จะติดเป็นสีส้ม(เหลือง)ที่ความเร็ว 1000Mbps หรือจะติดเป็นสีเขียวที่ความเร็ว 100Mbps ในกรณีกระแสสั่นการรับ-
ส่งข้อมูล และไฟ WLAN จะติดเป็นสีเขียวในการให้บริการ ในกรณีกระพริบมีการรับ-ส่งข้อมูล
ระบบงานโครงข่ายไร้สายในโรงเรียน

<table>
<thead>
<tr>
<th>ดวงไฟ</th>
<th>สี</th>
<th>สถานะ</th>
<th>ความหมาย</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power / Sys</td>
<td>เขียว</td>
<td>ไม่ติด</td>
<td>อุปกรณ์ปิดอยู่ ยังไม่ทำงาน</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ติด</td>
<td>อุปกรณ์เปิดอยู่ กำลังทำงานปกติ</td>
</tr>
</tbody>
</table>
| | แดง | กระพริบ | อุปกรณ์กำลังมีการปรับปรุงระบบ หรือเริ่มระบบใหม่ ยังไม่พร้อมใช้งาน หรือ อาจมีไฟล์เสียไม่พอ หรืออุปกรณ์มีปัญหาไม่สามารถใช้งานได้ ให้ทำการปิดและเปิดอุปกรณ์ใหม่อีกครั้ง และรอจนกว่าอุปกรณ์จะบูตเสร็จ ประมาณ 5~10 นาที หากยังเป็นสีแดง ให้ทำการส่งตรวจสอบอาการ ()
| | | ไม่ติด | อุปกรณ์เปิดอยู่ กำลังทำงานปกติ |
| Ethernet | เขียว | ติดกระพริบ | อุปกรณ์รับส่งข้อมูลด้วยความเร็ว 10/100 Mbps |
| | เหลือง | ติดกระพริบ | อุปกรณ์รับส่งข้อมูลด้วยความเร็ว 1000 Mbps |
| | ไม่ติด | | ไม่มีการเชื่อมต่อระบบผ่าน Ethernet Port |
| WLAN | เขียว | ติด | อุปกรณ์ให้บริการสัญญาณไวไฟสด |
| | | ไม่ติด | หยุดให้บริการสัญญาณไวไฟสด |
| | กระพริบ | | ให้บริการสัญญาณไวไฟสด พร้อมมีการรับส่งข้อมูล |
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)
หมวดที่ ๖ แผนผังการทำงานและการแก้ปัญหาของการเชื่อมต่อระบบโครงข่ายไร้สาย

๗.๑ โรงเรียนที่ใช้สัญญาณดาวเทียม IP Star
ระบบงานโครงข่ายไร้สายในโรงเรียน

1. ในกรณีที่ไม่เห็นSSID ของ OTPC WiFi ดังนี้
SSID1: Student Tablet
SSID2: ICT Free WiFi
SSID3: Guest
SSID4: Student WEI

ให้ตรวจสอบเบื้องต้นดังนี้

1.1 ไฟสถานการณ์ทำการของ Access Point
A. ไฟสีเหลืองไฟ PWR SYS ติดตั้งคืบหน้า
B. ไฟสีน้ำตาลไฟ ETIN ติดตั้งคืบหน้า
C. ไฟสีน้ำตาลไฟ WLAN ที่ Access Point ติดตั้งคืบหน้า

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477

1.2 ไฟสถานการณ์ทำการของ POE
A. ไฟ POE ติดตั้งคืบหน้า
B. ไฟ PWR ติดตั้งคืบหน้า

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477

1.3 ไฟสถานการณ์ทำการของ Switching Hub(ตัว分流โปรดเรียก Access Point แยกกัน 2 เครื่อง)
A. ไฟ PWR ติดตั้งคืบหน้า
B. ไฟ Switch Port ติดตั้งคืบหน้า (ตัว分流โปรดเรียก Access Point แยกกัน 2 เครื่อง)

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477

1.3 ไฟสถานการณ์ทำการของ Port P3-P4 ที่ Firewall
A. ไฟวงจรติดตั้งเชิงต่อเชิงต้องติดตั้งไฟ Firewall
B. ไฟวงจรติดตั้งเชิงต่อเชิงต้องติดตั้งไฟ Firewall

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477

2. กรณีที่ไม่สามารถใช้งาน Internet ได้

2.1 ไฟสถานการณ์ทำการของ Port P1 ที่ Firewall
A. ไฟวงจรติดตั้งเชิงต่อเชิงต้องติดตั้งไฟ Firewall
B. ไฟวงจรติดตั้งเชิงต่อเชิงต้องติดตั้งไฟ Firewall

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477

3. กรณีที่ Access Point เสียหรือ Network เสียของโรงเรียน

*โปรดติดต่อกับทีม IT โรงเรียน Call Center 1477
3.2 โรงเรียนที่อยู่นอกโครงข่าย OBEC-NET

แผนผังการเชื่อมต่ออุปกรณ์สําหรับโรงเรียนนอกโครงข่าย OBEC-NET

- Port P6 ของอุปกรณ์ Firewall เชื่อมต่อกับระบบ Network เลขของโรงเรียน(เดิม)
- Port P5 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ของโรงเรียน(เดิม)
- ยูปกรณ์กระจายดีกรีสําหรับโรงเรียนที่ได้ Access Point ZyXEL NWA5160-N ณ ภาพ 2 แห่ง
- ยูปกรณ์ POE ใช้คักลําตําในใส่ไฟที่ยูปกรณ์กระจายดีกรีสําหรับโรงเรียน LAN
- SSID ของ OTPC WIFI
 SSID 01: Student Tablet
 SSID 02: ICT Free WIFI
 SSID 03: Guest
 SSID 04: Student WIFI

- Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)

1. ในกรณีที่พบ SSID ของ OTPC WIFI ดังนี้
 SSID1: Student Tablet
 SSID2: ICT Free WIFI
 SSID3: แกนที่
 SSID4: Student WIFI

ให้ตรวจสอบเบื้องต้นดังนี้

1.1 ไฟสถานการณ์ทำงานของ Access Point
 A. ไฟสีแดงคือ PWR/SYS ติดตัวเครื่องหรือไม่
 B. ไฟสีเหลืองคือ ETHN ติดตัวเครื่องหรือไม่
 C. ไฟสีเขียวคือ WLAN ที่ Access Point ติดตัวเครื่องหรือไม่

*กรณีไม่มีไฟให้ติดต่อ Call Center 1477

1.2 ไฟสถานการณ์ทำงานของ POE
 A. ไฟ POE ติดตัวเครื่องหรือไม่
 B. ไฟ PWR ติดตัวเครื่องหรือไม่

*กรณีไม่มีไฟให้ติดต่อ Call Center 1477

1.3 ไฟสถานการณ์ทำงานของ Switching Hub(ตัวควบคุมระบบที่มี Access Point มากกว่า 2 เครื่อง)
 A. ไฟ PWR ติดตัวเครื่องหรือไม่
 B. ไฟ Switch Port ติดตัวเครื่องหรือไม่

*กรณีไม่มีไฟให้ติดต่อ Call Center 1477

2. ในกรณีไม่สามารถใช้งาน Internet ได้

2.1 ไฟสถานการณ์ทำงานของ Port P1 ที่ Firewall
 A. ไฟสถานการณ์ทำงานของ Port P1 ติดตัวเครื่องหรือไม่

*กรณีไฟไม่ทำงานให้ติดต่อ Call Center 1477

2.2 ไฟสถานการณ์ทำงานของ Firewall
 A. ไฟ PWR ติดตัวเครื่องหรือไม่
 B. ไฟ SYS ติดตัวเครื่องหรือไม่

*กรณีไฟไม่ทำงานให้ติดต่อ Call Center 1477

3. ในกรณีที่ Access Point เต็มหรือ Network เต็มของโรงเรียน
 ไม่สามารถใช้งาน Internet ได้

3.1 ไฟสถานการณ์ทำงานของ Port P5 Access Point เต็มของโรงเรียน
 A. ไฟสถานการณ์ทำงานของ Port P5 ติดตัวเครื่องหรือไม่

*กรณีไฟไม่ทำงานให้ติดต่อ Call Center 1477

3.2 ไฟสถานการณ์ทำงานของ Port P6 Network เต็มของโรงเรียน
 A. ไฟสถานการณ์ทำงานของ Port P6 ติดตัวเครื่องหรือไม่

*กรณีไฟไม่ทำงานให้ติดต่อ Call Center 1477
3.3 โรงเรียนที่อยู่ในโครงการ OBEC-NET (มี Router Cisco 892)

แผนผังการเชื่อมต่ออุปกรณ์สำหรับโรงเรียนที่อยู่ในโครงการ OBEC-Net (มี Router Cisco 892)

- Port P1 ของอุปกรณ์ Firewall เชื่อมต่อกับอุปกรณ์ Router Cisco 892 ที่ Port 6
- อุปกรณ์ POE ให้แยกย้ายๆกันกับ อุปกรณ์กระจายต่อกับฐานเรือสัญญาณ LAN
- SSID ของ OTPC WIFI
 - SSID1: Student.Tablet
 - SSID2: ICT.Free.WIFI
 - SSID3: Guest
 - SSID4: Student.WIFI

Port P3-P4 ของอุปกรณ์ Firewall เชื่อมต่อกับ Access Point ZyXEL NWA5160-N
ระบบโครงข่ายไร้สายในโรงเรียน

การแก้ไขปัญหาเบื้องต้นอุปกรณ์สำหรับโรงเรียนที่อยู่ในโครงการช่วย OBEC-Net (มี Router Cisco 892)

1. ในกรณีที่ไม่เห็น SSID ของ OTPC WiFi ดังนี้
SSID1: Student Tablet
SSID2: ICT Free WiFi
SSID3: Guest
SSID4: Student WiFi

ได้ตรวจสอบแล้วพบดังนี้

1.1 โปรแกรมการ์ดสามารถของ Access Point
A. ใช้สัญญาณ PWR/SYS ติดตั้งเข้าเครื่องไม่
B. ใช้สัญญาณ ETHN ติดตั้งเข้าเครื่องสัญญาณไม่
C. ใช้สัญญาณ WIFI Access Point ติดตั้งเข้าเครื่องไม่
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477
1.2 โปรแกรมการ์ดสามารถของ POE
A. ใช้ POE ติดตั้งเข้าเครื่องไม่
B. ใช้ PWR ติดตั้งเข้าเครื่องไม่
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477
1.3 โปรแกรมการ์ดข้อมูลของ Switching Hub(ต่อกับเครื่องที่มี Access Point) มากกว่า 2 เครื่อง
A. ไม่ PWR ติดตั้งเข้าเครื่องไม่
B. ไม่ Switch Port ติดตั้งเข้าเครื่องไม่ (ถ้าหากมีพอที่อยู่กับ Access Point ไม่ได้)
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477

1.3 โปรแกรมการ์ดสำหรับ Port P3-P4 ที่ Firewall
A. ไฟล์การ์ดใช้สัญญาณช้าหรือไม่ทางซ้ายสีมั้งหรือไม่
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477
2. กรณีที่ไม่สามารถใช้งาน Internet ได้
2.1 โปรแกรมการ์ดสำหรับ Port P1 ที่ Firewall
A. ไฟล์การ์ดใช้สัญญาณช้าหรือไม่ทางซ้ายสีมั้งหรือไม่
B. ไฟล์การ์ดสำหรับ Port Firewall
- ใช้ PWR ติดตั้งเข้าเครื่องไม่
- ใช้ SYS ติดตั้งเข้าเครื่องไม่
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477
3. กรณีที่ Access Point เสียหรือ Network เสียของโรงเรียน
ไม่สามารถใช้งาน Internet ได้
3.1 โปรแกรมการ์ดสำหรับ Port P5 Access Point เสียของโรงเรียน
A. ไฟล์การ์ดใช้สัญญาณช้าหรือไม่ทางซ้ายสีมั้งหรือไม่
3.2 โปรแกรมการ์ดสำหรับ Port P6 Network เสียของโรงเรียน
A. ไฟล์การ์ดใช้สัญญาณช้าหรือไม่ทางซ้ายสีมั้งหรือไม่
*ในกรณีไม่ติดตั้งเร็ว Call Center 1477
ระบบงานโครงข่ายไร้สายในโรงเรียน

3.4 โรงเรียนที่อยู่ในโครงการ OBEC-NET (ไม่มี Router Cisco 892)

แผนผังการเชื่อมต่อสัญญาณส่วนบุคคลโรงเรียนที่อยู่ในโครงการ OBEC-NET (ไม่มี Router Cisco 892)

- Port P1 ของสูปเปอร์IORI Firewall เชื่อมต่อกับสูปเปอร์IORI Wi-Link POE หรือ Media Converter โดยตรง
- อุปกรณ์ POE ได้ส่งสัญญาณให้กับสูปเปอร์IORI สามารถส่งสัญญาณให้กับ LAN
- อุปกรณ์ระบบสัญญาณไร้สายส่วนบุคคล Point ZyXEL NWAS160-N มากกว่า 2 เครื่อง

- Port P5 ของสูปเปอร์IORI Firewall เชื่อมต่อกับ Access Point ของโรงเรียนอีก pienią

SSID ของ OTPC WiFi
SSID1: Student Tablet
SSID2: ICT Free WiFi
SSID3: Guest
SSID4: Student WiFi

- Port P9-P14 ของสูปเปอร์IORI Firewall เชื่อมต่อกับ Access Point ZyXEL NWAS160-N
1. ในการใส่ในแต่ละ SSID ของ OTPC WIFI ดังนี้
SSID1: Student Tablet
SSID2: ICT Free WiFi
SSID3: Guest
SSID4: Student WiFi

ให้ตรวจสอบเบื้องต้นดังนี้
1.1 ไฟล์สอกรอบการทำงานของ Access Point
A. ไฟล์ PWR/WAN ติดตั้งพร้อมกัน
B. ไฟล์ PWR/ETH ติดตั้งพร้อมกัน
C. ไฟล์ PWR/WLAN ติดตั้งพร้อมกัน
*เรื่องนี้ไม่ได้ทำที่โรงเรียน Cell Center 1477

1.2 ไฟล์สอกรอบการทำงานของ POE
A. ไฟ POE ติดตั้งพร้อมกัน
B. ไฟ PWR ติดตั้งพร้อมกัน
*เรื่องนี้ไม่ได้ทำที่โรงเรียน Cell Center 1477

1.3 ไฟล์สอกรอบทำงานของ Port P3-P4 ที่ Firewall
A. ไฟล์ PWR/WAN ติดตั้งพร้อมกัน
*เรื่องนี้ไม่ได้ทำที่โรงเรียน Cell Center 1477

2.1 ไฟล์สอกรอบทำงานของ Port P1 ที่ Firewall
A. ไฟล์ PWR/WAN ติดตั้งพร้อมกัน
B. ไฟทำงานของ Access Point
C. ไฟล์ PWR/WLAN ติดตั้งพร้อมกัน
*เรื่องนี้ไม่ได้ทำที่โรงเรียน Cell Center 1477

3. ไฟล์สอกรอบ Access Point เสียหรือ Network เสียของโรงเรียน
A. ไฟทำงานของ Port P5 Access Point เสีย
B. ไฟทำงานของ Port P6 Network เสีย
*เรื่องนี้ไม่ได้ทำที่โรงเรียน Cell Center 1477
ภาคผนวก

คัดค้านที่ควรทราบ

Registration

Registration ถ้าแปลตามความหมายคือการลงทะเบียนสำหรับแต่ละผู้สำหรับโครงการนี้ การ Registration แม้จะเป็นสูตรแบบดั้งเดิมก็คือ การลงทะเบียนโดยใช้ MAC Address และการลงทะเบียนด้วยตนเองแบบ Self Register

Authentication

authentication คือการพิสูจน์ตัวตน ใช้ร่วมกับ การพิสูจน์สิทธิ Authorize ในเครือข่าย OBEC การเข้าใช้งานในระบบจะมีการใช้ระบบ Authentication ก่อนการเข้าใช้งานตลอดเวลา

Portal WEB

Portal WEB ในกรณีที่ทำการ Authentication แบบที่มีการเก็บค่า MAC Address ไม่ผ่านระบบ จะทำการส่งข้อมูลไปยัง Portal WEB Server เพื่อให้ทำการลงทะเบียนแบบ Self Register ต่อไป

SSID

SSID (Service Set Identifier) คือชื่อของ Wireless LAN ซึ่งผู้ให้บริการแต่ละรายจะมี SSID ที่แตกต่างกัน โดยชื่อที่แตกต่างกันนั้นทำให้ผู้ใช้สามารถเลือกที่จะเชื่อมต่อกับผู้ให้บริการที่ตนต้องการได้ภายในบริเวณเดียวกัน

SSID แบบ 802.1x

Authenticate client (อาจจะเป็นการ assign VLAN) บน Port ของ switch หรือ association ของ Access Point โดยใช้ Radius (หรืออย่างอื่น) User ต้องมี Certificate หรือ Password ไว้สำหรับเข้าใช้งาน

dot1x (802.1x) เป็นการ authentication ในระดับ data-link layer โดยฐานข้อมูล user account ของผู้เข้าใช้ LAN (ทั้ง wire และ wireless) จะเก็บอยู่บน RADIUS server แต่เนื่องจาก RADIUS เองไม่ได้รองรับการ authentication ที่ layer ต่างๆ (layer 2) ก็เลยต้องเพิ่มมาตรฐานเพื่อจะขยายความสามารถของ RADIUS โดยโปรดอดดีที่เพิ่มเข้ามาทำงานบน RADIUS อีกทีคือ Extensible Authentication Protocol หรือ EAP

เราสามารถเลือกใช้ EAP ตัวใดก็ได้ เพราะมีหลายตัวให้เลือกเลือกเช่น LEAP, EAP-TLS, PEAP, EAP-FAST,... อีกมากมาย แต่ละตัวจะแตกต่างกันในเรื่องของข้อมูลที่ใช้ยืนยันตัวตน เช่น LEAP
ระบบงานโครงข่ายไร้สายในโรงเรียน

ต้องใช้ username กับ password แต่ EAP-TLS ต้องใช้ digital certificate นอกจากนี้ยังต้องกำหนดความปลอดภัยในระหว่างที่กำลัง authentication กันอยู่ การศึกษาแต่ละ EAP นั้นอาจพอสมควร ถ้าเข้าใจ EAP ถึงเข้าใจ dot1x ได้ไม่ยาก

ส่วนเรื่องหลังจาก authentication แล้ว การกำหนดว่าจะให้ client อยู่ VLAN ไหนได้ QoS หรือมี ACL อะไรคอยควบคุม traffic ของ client คนนั้นจะเป็นขั้นตอนถัดไป เราจัดว่าเป็น authorization ถ้า Cisco เรียกส่วนนี้เป็น Identity-Based Network Service

MAC Address

MAC Address (Media Access Control Address) คือ หมายเลขของ Network Card (LAN, Wireless LAN) ซึ่งหมายถึงจะไม่ซ้ำกัน โดยค่าหมายเลขนี้จะถูกกำหนดที่โรงงานที่ผลิต เชน Network Card รูปแบบของค่า MAC Address จะอยู่ในรูปแบบเลขฐานสิบ ดังนี้ 01-23-45-67-89-ab หรือ 01:23:45:67:89:ab

Bandwidth

Bandwidth (ระบบวัดความ) คือ ค่าที่ใช้วัดความเร็วในการส่งข้อมูลของอินเทอร์เน็ต เพื่อมากมายเรามักวัดความเร็วของการส่งข้อมูลเป็น bps (bit per second) , Mbp (bps*1000000) เช่น Bandwidthของการใช้สายโทรศัพท์ในประเทศไทย เราทั่วๆนี้ใช้ 14.4 Kbps เปรียบเทียบถึงๆ Bandwidth ที่คือความกว้างของเส้นทางในการส่งข้อมูล เมื่อเราสามารถสื่อสารกันได้กับแลนด์นิ้น ยิ่งมีเส้นกว้างเท่าไรอ่นะนั้น เชื่อมโยงไปกับข้อมูลก็สามารถวิ่งได้สะดวกมาก ขึ้นเท่านั้นที่ใช้ในการรับ-ส่งข้อมูล

Firewall

Firewall เป็นระบบรักษาความปลอดภัยของระบบคอมพิวเตอร์แบบหนึ่งที่ใช้กันอย่างแพร่หลาย เช่น มีทั้งอุปกรณ์ Hardware และ Software โดยหน้าที่หลัก ๆ ของ Firewall นั้น จะทำหน้าที่ควบคุมการใช้งานระหว่าง Network ต่าง ๆ (Access Control) โดย Firewall จะเป็นคนที่กำหนดว่าใคร (Source) , ไปที่ไหน (Destination) , ด้วยบริการอะไร (Service/Port) ถ้าเป็นไปงานได้ถ้าวันนี้ นั่นถึง หน้ากงานรักษาความปลอดภัย หรือ ที่เรารู้กันดีมากว่า "ยาม" Firewall ก็มีหน้าที่เหมือนกัน "ยาม" เหมือนกัน ซึ่ง "ยาม" จะคอยตรวจบัตร เมื่อมีคนเข้ามา ซึ่งคนที่มีบัตร "ยาม" ก็คือ "มีสิทธิ์" (Authorized) ก็สามารถเข้ามาได้ ซึ่งอาจจะมีการกำหนดว่าคน ๆ นั้น สามารถไปที่ชั้นไหนบ้าง (Destination) ถ้าคนที่ไม่มีบัตร ก็ถือว่า เป็นคนที่ไม่มีสิทธิ์ (Unauthorized) ก็ไม่สามารถเข้าได้ หรือว่ามีบัตร แต่ไม่มีสิทธิ์ไปชั้นนั้น ก็ไม่สามารถผ่านไปได้ หน้าที่ของ Firewall ก็เช่นกัน
อุปกรณ์ที่ควรทราบ

Modem

โมเด็ม (Modem) มาจากคำว่า MOdulator/DEModulator (ใช้คำนำหน้าที่ส่งคำรวมกัน) เป็นอุปกรณ์ที่ทำหน้าที่แปลงสัญญาณ คอมพิวเตอร์ให้สามารถเชื่อมต่อกับคอมพิวเตอร์ที่อยู่ระยะไกลเข้าหากันได้โดยการผ่านสายโทรศัพท์ โดยไม่ต้องทำหน้าที่แปลงสัญญาณ ซึ่งภาคส่วนที่ทำการแปลงสัญญาณคอมพิวเตอร์ (Digital) ให้เป็นสัญญาณโทรศัพท์ (Analog) ในขณะที่ภาครับนั้นจะทำการแปลงสัญญาณโทรศัพท์ (Analog) กลับมาเป็นสัญญาณคอมพิวเตอร์ (Digital)

Router

เราเตอร์ (router) เป็นอุปกรณ์คอมพิวเตอร์ที่ทำหน้าที่หาเส้นทางและส่ง (forward) แพ็กเกตข้อมูลระหว่างเครือข่ายคอมพิวเตอร์ ไปยังเครือข่ายปลายทางที่ต้องการ เราเตอร์ทำงานบนเยอรม์ที่ 3 ตามมาตรฐานของ OSI Model

Switch

สวิตซ์ (Switch) เป็นอุปกรณ์ที่พัฒนาการต่อจากฮับดีขึ้น มีความสามารถมากกว่า Hub โดยการทำงานของสวิตซ์จะส่งข้อมูลออกไปเฉพาะพอร์ตที่ใช้ในการติดต่อกับเครื่องคอมพิวเตอร์ที่เชื่อมปลายทางเท่านั้น ไม่ส่งกระจายข้อมูลไปยังทุกพอร์ตเหมือนอย่างฮับ ทำให้ในสวิตซ์ไม่มีปัญหาการชนของข้อมูล

Wireless Access Point

แอคเซสพอยต์ไร้สาย (Wireless Access Point) หรือ WAP หรือเรียกสั้นๆว่า AP คือ อุปกรณ์ในเครือข่ายคอมพิวเตอร์ ที่ช่วยให้อุปกรณ์ไร้สายสามารถเชื่อมต่อกับเครือข่ายแบบมีสายได้โดยการใช้เทคโนโลยีของแลนไร้สาย หรือ มาตรฐานอื่นๆที่เกี่ยวข้อง AP มักจะเชื่อมต่อกับเราเตอร์ด้วยสายเคเบิล (ผ่านเครือข่าย แบบมีสาย) ซึ่งอาจเป็นอุปกรณ์แยกต่างหาก หรือเป็นส่วนหนึ่งของเราเตอร์

สำหรับอุปกรณ์ Wireless Access Point ที่มีขายในท้องตลาดปัจจุบันอาจแบ่งออกเป็นสองรูปแบบ คือ

- **Wireless Access Point แบบ Stand alone** คือเป็นแบบที่สามารถทำงานได้ด้วยตัวเอง เราสามารถซื้อมาแล้วเสียบปลั๊คใช้งานได้ทันที

- **Wireless Access Point แบบใช้ Wireless Controller** เป็นตัวควบคุมการทำงาน Wireless Access Point แบบนี้ต้องใช้อุปกรณ์แบบเฉพาะตัวเท่านั้นไม่สามารถใช้ร่วมกับแบบอื่นได้และ Wireless Access Point ยังต้องตั้งค่ากับอุปกรณ์อย่างหนึ่งเท่านั้น

All in one Router

All in one Router คือ อุปกรณ์ที่รวมอุปกรณ์ 4 อย่างเข้าด้วยกัน คือ
- Modem
- Router
- Switching
- Wireless access point
ระบบงานโครงข่ายไร้สายในโรงเรียน

โครงการพัฒนาระบบโครงข่ายไร้สาย OTPC (Wi-Fi Network)